Wastewater Treatment and Reuse
Theory and Design Examples

Volume 2
Post-Treatment, Reuse, and Disposal

Syed R. Qasim
Guang Zhu
Contents

Preface ... xv

Acknowledgment ... xxi

Authors ... xxiii

VOLUME 1 Principles and Basic Treatment

1 Introduction to Wastewater Treatment: An Overview 1-1
1.1 Historical Development .. 1-1
1.2 Current Status .. 1-1
1.3 Future Directions ... 1-3
 1.3.1 Health and Environmental Concerns .. 1-3
 1.3.2 Improved Wastewater Characterization and Sidestreams 1-4
 1.3.3 Rehabilitation of Aging Infrastructure .. 1-4
 1.3.4 Energy Reduction and Recovery from Wastewater 1-5
 1.3.5 Building, Retrofitting, and Upgrading POTWs 1-5
 1.3.6 Process Selection, Performance, Reliability, and Resiliency 1-5
 1.3.7 Reduction in Sludge Quantity, Nutrients Recovery, and Biosolids Reuse 1-6
 1.3.8 Effluent Disposal and Reuse .. 1-6
 1.3.9 Control of Combined Sewer Overflows and Stormwater Management 1-7
 1.3.10 Decentralized and On-Site Treatment and Disposal 1-8
 1.3.11 Technology Assessment and Implementation 1-8
1.4 Wastewater Treatment Plants ... 1-8
1.5 Scope of This Book ... 1-9
Discussion Topics and Review Problems ... 1-9
References ... 1-9

2 Stoichiometry and Reaction Kinetics .. 2-1
2.1 Chapter Objectives .. 2-1
2.2 Stoichiometry .. 2-1
 2.2.1 Homogeneous Reactions .. 2-1
 2.2.2 Heterogeneous Reactions .. 2-2
2.3 Reaction Rates and Order of Reaction ... 2-4
 2.3.1 Reaction Rates .. 2-5
 2.3.2 Saturation-Type or Enzymatic Reactions 2-8
2.4 Effect of Temperature on Reaction Rate ... 2-11
Contents

2.5 Reaction Order Data Analysis and Design
- 2.5.1 Zero-Order Reaction .. 2-12
- 2.5.2 First-Order Reaction ... 2-15
- 2.5.3 Second-Order Reaction ... 2-26

Discussion Topics and Review Problems ... 2-33

References .. 2-35

3 Mass Balance and Reactors .. 3-1
3.1 Chapter Objectives .. 3-1
3.2 Mass Balance Analysis ... 3-1
- 3.2.1 Procedure for Mass Balance Analysis 3-2
- 3.2.2 Combining Flow Streams of a Single Material 3-3
- 3.2.3 Combining a Conservative Substance and Flow 3-6
- 3.2.4 Mass or Concentration of Nonconservative Substances in Reactors 3-13
3.3 Flow Regime .. 3-16
3.4 Types of Reactors ... 3-16
- 3.4.1 Batch Reactor ... 3-16
- 3.4.2 Continuous-Flow Stirred-Tank Reactor 3-18
- 3.4.3 Plug Flow Reactor .. 3-34
- 3.4.4 Comparative Performance of a PFR and CFSTR .. 3-39
- 3.4.5 Performance of CFSTRs in Series (Cascade Arrangement) 3-44
- 3.4.6 Graphical Solution of Series CFSTRs 3-52
3.5 Plug Flow Reactors with Dispersion and Conversion 3-56
- 3.5.1 Flow Regime and Dispersion of Tracer 3-56
- 3.5.2 Performance Evaluation of Sedimentation Basin 3-56
- 3.5.3 Dispersion with Conversion .. 3-62
3.6 Equalization of Flow and Mass Loadings 3-69
- 3.6.1 Need and Types .. 3-69
- 3.6.2 Design Considerations ... 3-70
- 3.6.3 Design Volume of Equalization Basin 3-71

Discussion Topics and Review Problems ... 3-83

References .. 3-85

4 Sources and Flow Rates of Municipal Wastewater 4-1
4.1 Chapter Objectives .. 4-1
4.2 Relationship between Municipal Water Demand and Wastewater Flow 4-1
4.3 Components of Municipal Water Demand 4-3
- 4.3.1 Residential or Domestic Water Use 4-4
- 4.3.2 Commercial Water Use .. 4-4
- 4.3.3 Institutional and Public Water Use 4-4
- 4.3.4 Industrial Water Use ... 4-6
- 4.3.5 Water Unaccounted or or Lost ... 4-6
- 4.3.6 Factors Affecting Water Use ... 4-6
4.4 Wastewater Flow ... 4-12
4.5 Wastewater Flow Variation .. 4-13
- 4.5.1 Dry Weather Flow ... 4-13
- 4.5.2 Infiltration and Inflow ... 4-14
- 4.5.3 Common Terms Used to Express Flow Variations 4-15
5 Characteristics of Municipal Wastewater ... 5-1
 5.1 Chapter Objectives ... 5-1
 5.2 Physical Quality ... 5-1
 5.2.1 Temperature ... 5-1
 5.2.2 Color, Turbidity, and Odor ... 5-1
 5.2.3 Settleable and Suspended (Non), Dissolved (Filterable), Volatile
 and Fixed Solids ... 5-3
 5.3 Chemical Quality ... 5-7
 5.4 Measurement of Organic Matter and Organic Strength 5-7
 5.4.1 Biochemical Oxygen Demand .. 5-7
 5.4.2 Nitrogenous Oxygen Demand .. 5-24
 5.4.3 Chemical Oxygen Demand ... 5-30
 5.4.4 Total Organic Carbon ... 5-33
 5.4.5 Total Oxygen Demand and Theoretical Oxygen Demand 5-33
 5.4.6 Relationship between BOD₅ and Other Tests Used for
 Organic Content ... 5-33
 5.4.7 Other Nonspecific and Specific Tests for Organic Contents 5-35
 5.4.8 Nonbiodegradable and Toxic Compounds .. 5-36
 5.5 Microbiological Quality .. 5-36
 5.5.1 Basic Concepts ... 5-36
 5.5.2 Indicator Organisms ... 5-38
 5.5.3 Measurement Techniques ... 5-39
 5.6 Priority Pollutants .. 5-50
 5.7 Toxicity and Biomonitoring ... 5-50
 5.7.1 Toxicity Test .. 5-51
 5.7.2 Toxicity Test Evaluation ... 5-51
 5.8 Unit Waste Loading and Population Equivalent 5-57
 5.9 Mass Loadings and Sustained Mass Loadings ... 5-60
Discussion Topics and Review Problems ... 5-65
References .. 5-69

6 Wastewater Treatment Objectives, Design Considerations, and
Treatment Processes ... 6-1
 6.1 Chapter Objectives ... 6-1
 6.2 Treatment Objectives and Regulations ... 6-1
 6.2.1 Objectives .. 6-1
 6.2.2 Regulations .. 6-1
 6.3 Basic Design Considerations ... 6-3
 6.3.1 Initial and Design Years and Design Population 6-4
 6.3.2 Service Area and Treatment Plant Site Selection 6-13
 6.3.3 Regulatory Requirements and Effluent Limitations 6-15
 6.3.4 Characteristics of Wastewater and Degree of Treatment 6-16
 6.3.5 Treatment Processes, Process Diagrams, and Equipment 6-17
 6.3.6 Plant Layout ... 6-38
 6.3.7 Plant Hydraulic Conditions .. 6-39

References .. 4-25

References .. 4-27
Contents

9 Primary and Enhanced Sedimentation ... 9-1
 9.1 Chapter Objectives ... 9-1
 9.2 Flocculent Settling (Type II) ... 9-1
 9.3 Influent Quality of Primary Sedimentation Basin 9-8
 9.4 Types of Primary Sedimentation Basins 9-11
 9.4.1 Rectangular Basin .. 9-11

8 Grit Removal .. 8-1
 8.1 Chapter Objectives ... 8-1
 8.2 Need and Location of Grit Removal Facility 8-1
 8.3 Gravity Settling .. 8-2
 8.3.1 Types of Gravity Settling .. 8-2
 8.3.2 Discrete Settling (Type I) .. 8-2
 8.4 Types of Grit Removal Facilities 8-19
 8.4.1 Horizontal-Flow Grit Chamber 8-19
 8.4.2 Design of Effluent Trough 8-36
 8.4.3 Aerated Grit Chamber ... 8-43
 8.4.4 Vortex-Type Grit Chambers 8-51
 8.4.5 Sludge Degritting ... 8-55
 8.4.6 Grit Collection and Removal 8-56
 8.5 Grit Characteristics and Quality 8-56
 8.6 Grit Processing, Reuse, and Disposal 8-57
 Discussion Topics and Review Problems 8-59
 References ... 8-60

7 Screening .. 7-1
 7.1 Chapter Objectives ... 7-1
 7.2 Screening Devices ... 7-1
 7.2.1 Coarse Screens ... 7-1
 7.2.2 Design Considerations of Coarse Screens and Installations 7-2
 7.2.3 Fine Screens ... 7-31
 7.2.4 Design of Fine Screens ... 7-32
 7.2.5 Special Screens ... 7-40
 7.3 Quantity, Characteristics, and Disposal of Screenings 7-41
 7.3.1 Quantity and Characteristics 7-41
 7.3.2 Processing and Disposal of Screenings 7-41
 Discussion Topics and Review Problems 7-43
 References ... 7-45

6.4 Wastewater Facility Planning, Design, and Management 6-57
 6.4.1 Facility Planning .. 6-57
 6.4.2 Design Plans, Specifications, Cost Estimates, and Support Documents 6-58
 6.4.3 Construction and Construction Management 6-61
 Discussion Topics and Review Problems 6-61
 References ... 6-63
Contents

9 Biological Waste Treatment

9.1 Chapter Objectives ... 9-1
9.2 Fundamentals of Biological Waste Treatment 9-1
9.2.1 Biological Growth and Substrate Utilization 9-1
9.2.2 Types of Biological Treatment Processes 9-9
9.3 Suspended Growth Aerobic Treatment Processes 9-19
9.3.1 Microbial Growth Kinetics in Batch Reactor 9-20
9.3.2 Microbial Growth Kinetics in Continuous Flow Reactor 9-30
9.3.3 Continuous Flow Completely Mixed Reactor 9-32
9.3.4 Determination of Biological Kinetic Coefficients in a Continuous Flow Completely Mixed Reactor ... 9-54
9.3.5 Continuous Plug-Flow Reactor .. 9-63
9.3.6 Operational Parameters of Activated Sludge Process 9-68
9.3.7 Activated Sludge Process Modifications 9-74
9.3.8 Oxygen Transfer .. 9-103
9.3.9 Aeration Device, Equipment, and Hardware Assembly 9-142
9.3.10 Aeration System Design ... 9-144
9.3.11 Aerated Lagoon .. 9-172
9.3.12 Stabilization Ponds ... 9-191
9.4 Fixed-Film or Attached Growth Aerobic Treatment Processes 9-209
9.4.1 Nonsubmerged Attached Growth Processes 9-209
9.4.2 Combined Attached and Suspended Growth Processes 9-247
9.4.3 Integrated Fixed-Film Media in Aeration Basin 9-254
9.4.4 Submerged Attached Growth Systems ... 9-260
9.5 Anaerobic Treatment Processes ... 9-265
9.5.1 Capabilities of Anaerobic Treatment Processes 9-265
9.5.2 Fundamentals of Anaerobic Process ... 9-265
9.5.3 Environmental Factors ... 9-266
9.5.4 Process Analysis ... 9-267

10 Biological Waste Treatment ... 10-1
10.1 Chapter Objectives ... 10-1
10.2 Fundamentals of Biological Waste Treatment 10-1
10.2.1 Biological Growth and Substrate Utilization 10-1
10.2.2 Types of Biological Treatment Processes 10-9
10.3 Suspended Growth Aerobic Treatment Processes 10-19
10.3.1 Microbial Growth Kinetics in Batch Reactor 10-20
10.3.2 Microbial Growth Kinetics in Continuous Flow Reactor 10-30
10.3.3 Continuous Flow Completely Mixed Reactor 10-32
10.3.4 Determination of Biological Kinetic Coefficients in a Continuous Flow Completely Mixed Reactor ... 10-54
10.3.5 Continuous Plug-Flow Reactor .. 10-63
10.3.6 Operational Parameters of Activated Sludge Process 10-68
10.3.7 Activated Sludge Process Modifications 10-74
10.3.8 Oxygen Transfer .. 10-103
10.3.9 Aeration Device, Equipment, and Hardware Assembly 10-142
10.3.10 Aeration System Design ... 10-144
10.3.11 Aerated Lagoon .. 10-172
10.3.12 Stabilization Ponds ... 10-191
10.4 Fixed-Film or Attached Growth Aerobic Treatment Processes 10-209
10.4.1 Nonsubmerged Attached Growth Processes 10-209
10.4.2 Combined Attached and Suspended Growth Processes 10-247
10.4.3 Integrated Fixed-Film Media in Aeration Basin 10-254
10.4.4 Submerged Attached Growth Systems ... 10-260
10.5 Anaerobic Treatment Processes ... 10-265
10.5.1 Capabilities of Anaerobic Treatment Processes 10-265
10.5.2 Fundamentals of Anaerobic Process ... 10-265
10.5.3 Environmental Factors ... 10-266
10.5.4 Process Analysis ... 10-267
VOLUME 2 Post-Treatment, Reuse, and Disposal

11 Disinfection

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Chapter Objectives</td>
<td>11-1</td>
</tr>
<tr>
<td>11.2 Objectives and Requirements of Disinfection.</td>
<td>11-1</td>
</tr>
<tr>
<td>11.2.1 Pathogens and Indicator Organisms</td>
<td>11-1</td>
</tr>
<tr>
<td>11.2.2 Microbial Reduction in Wastewater Treatment Processes</td>
<td>11-3</td>
</tr>
<tr>
<td>11.2.3 Regulatory Process and Requirements</td>
<td>11-7</td>
</tr>
<tr>
<td>11.3 Disinfection Techniques</td>
<td>11-7</td>
</tr>
<tr>
<td>11.3.1 Chemical Disinfection Processes</td>
<td>11-8</td>
</tr>
<tr>
<td>11.3.2 Physical Disinfection Processes</td>
<td>11-8</td>
</tr>
<tr>
<td>11.3.3 Suitability of Disinfection Processes</td>
<td>11-8</td>
</tr>
<tr>
<td>11.3.4 Chlorine and Ozone Doses for Required Disinfection</td>
<td>11-9</td>
</tr>
<tr>
<td>11.3.5 Disinfection By-products</td>
<td>11-9</td>
</tr>
<tr>
<td>11.4 Inactivation Mechanisms</td>
<td>11-9</td>
</tr>
<tr>
<td>11.5 Inactivation Kinetics</td>
<td>11-11</td>
</tr>
<tr>
<td>11.5.1 Natural Die-Off Kinetics</td>
<td>11-11</td>
</tr>
<tr>
<td>11.5.2 Inactivation Kinetics for Chemical Disinfection Processes</td>
<td>11-15</td>
</tr>
<tr>
<td>11.6 Chlorination</td>
<td>11-29</td>
</tr>
<tr>
<td>11.6.1 Physical Properties of Chlorine and Hypochlorite</td>
<td>11-30</td>
</tr>
<tr>
<td>11.6.2 Basic Chlorine Chemistry</td>
<td>11-36</td>
</tr>
<tr>
<td>11.6.3 Components of Chlorination System</td>
<td>11-55</td>
</tr>
<tr>
<td>11.6.4 Other Beneficial Applications of Chlorine</td>
<td>11-68</td>
</tr>
<tr>
<td>11.6.5 Disinfection with Chlorine Dioxide</td>
<td>11-73</td>
</tr>
<tr>
<td>11.7 Dechlorination</td>
<td>11-76</td>
</tr>
<tr>
<td>11.7.1 Dechlorination with Sulfur Dioxide (SO₂)</td>
<td>11-76</td>
</tr>
</tbody>
</table>

Contents

- **11 Disinfection**
 - 11.1 Chapter Objectives ... 11-1
 - 11.2 Objectives and Requirements of Disinfection...................... 11-1
 - 11.2.1 Pathogens and Indicator Organisms 11-1
 - 11.2.2 Microbial Reduction in Wastewater Treatment Processes 11-3
 - 11.2.3 Regulatory Process and Requirements 11-7
 - 11.3 Disinfection Techniques .. 11-7
 - 11.3.1 Chemical Disinfection Processes 11-8
 - 11.3.2 Physical Disinfection Processes 11-8
 - 11.3.3 Suitability of Disinfection Processes 11-8
 - 11.3.4 Chlorine and Ozone Doses for Required Disinfection 11-9
 - 11.3.5 Disinfection By-products 11-9
 - 11.4 Inactivation Mechanisms ... 11-9
 - 11.5 Inactivation Kinetics .. 11-11
 - 11.5.1 Natural Die-Off Kinetics 11-11
 - 11.5.2 Inactivation Kinetics for Chemical Disinfection Processes ... 11-15
 - 11.6 Chlorination ... 11-29
 - 11.6.1 Physical Properties of Chlorine and Hypochlorite 11-30
 - 11.6.2 Basic Chlorine Chemistry 11-36
 - 11.6.3 Components of Chlorination System 11-55
 - 11.6.4 Other Beneficial Applications of Chlorine 11-68
 - 11.6.5 Disinfection with Chlorine Dioxide 11-73
 - 11.7 Dechlorination .. 11-76
 - 11.7.1 Dechlorination with Sulfur Dioxide (SO₂) 11-76

- **Discussion Topics and Review Problems** 10-435
- **References** .. 10-445

- **10.6 Biological Nitrogen Removal** 10-297
 - 10.6.1 Nitrification .. 10-297
 - 10.6.2 Denitrification ... 10-337
- **10.7 Enhanced Biological Phosphorus Removal** 10-371
 - 10.7.1 Process Fundamentals .. 10-371
 - 10.7.2 Biochemical Reactions in Anaerobic Zone 10-372
 - 10.7.3 Biochemical Reactions in Aerobic Zone 10-375
 - 10.7.4 Overall Process Considerations 10-375
 - 10.7.5 Biosolids from EBPR Process 10-376
- **10.8 Biological Nutrient Removal** 10-384
 - 10.8.1 General Description of BNR Processes 10-385
 - 10.8.2 Performance of BNR Processes 10-385
 - 10.8.3 General Design Considerations for BNR Facilities 10-385
 - 10.8.4 Computer Application for BNR Facility Design 10-408
- **10.9 Secondary Clarification** .. 10-412
 - 10.9.1 Design Considerations for Secondary Clarifier 10-412
 - 10.9.2 Zone or Hindered Settling (Type III) 10-412
 - 10.9.3 Design of Secondary Clarifiers 10-427
- **References** .. 10-445
Contents

11.7.2 Dechlorination with Sodium Bisulfite (NaHSO₃) .. 11-77
11.7.3 Dechlorination with Other Reducing Agents ... 11-78
11.7.4 Dechlorination with Activated Carbon ... 11-78
11.7.5 Dechlorination of Chlorine Dioxide ... 11-78

12.3 Health Risk Analysis ... 12-0

12.1 Chapter Objectives ... 12-0
12.2 Major Issues Related to Effluent Reuse .. 12-0
12.2.1 Quality Parameters of Reclaimed Water .. 12-0
12.2.2 Treatment Technology for Reclaimed Water .. 12-0
12.2.3 Regulations or Guidelines Regarding Reuse of Reclaimed Water 12-0

12.3 Health Risk Analysis ... 12-0
12.3.1 Quantitative Toxicology ... 12-0
12.3.2 Risk Assessment .. 12-0
12.3.3 Assessment of Noncarcinogenic Effects .. 12-0
12.3.4 Assessment of Carcinogenic Effects ... 12-0

12.4 Storage Facility for Reclaimed Water .. 12-0
12.4.1 Enclosed Storage Reservoirs .. 12-0
12.4.2 Open Storage Reservoirs ... 12-0

12.5 Reclaimed Water Reuse .. 12-0
12.5.1 Urban Water Reuse ... 12-0
12.5.2 Industrial Water Reuse ... 12-0
12.5.3 Agricultural Irrigation Reuse ... 12-0
12.5.4 Impoundments for Recreational and Aesthetic Reuse 12-0
12.5.5 Environmental Reuse for Habitat Restoration and Enhancement 12-0
12.5.6 Groundwater Recharge ... 12-0
12.5.7 Augmentation of Potable Water Supply ... 12-0

12.6 Effluent Discharge into Natural Waters ... 12-0
12.6.1 Requirements of Outfall ... 12-0
12.6.2 Water Quality Models of Surface Water ... 12-0
12.6.3 Design of Outfall Structures .. 12-0

11.8 Disinfection with Ozone .. 11-0
11.8.1 Ozone Chemistry ... 11-0
11.8.2 Properties of Ozone ... 11-0
11.8.3 Ozone Dosage for Disinfection .. 11-0
11.8.4 Ozone Generation .. 11-0
11.8.5 Ozone Application ... 11-0
11.8.6 Kinetic Equations for Ozone Disinfection ... 11-0

11.9 Disinfection with UV Radiation ... 11-0
11.9.1 Mechanism of UV Disinfection .. 11-0
11.9.2 Source of UV Radiation .. 11-0
11.9.3 Types of UV Reactors and Lamp Arrangements 11-0
11.9.4 Microbial Repair after UV Disinfection ... 11-0
11.9.5 Inactivation Kinetics for UV Irradiation .. 11-0
11.9.6 UV Transmittance, Density, Intensity, and Dose 11-0
11.9.7 Major Components of Open-Channel UV Disinfection Systems 11-0
11.9.8 Hydraulics of UV Channel .. 11-0

11.10 Recent Developments in Disinfection Reactor Design 11-0
Discussion Topics and Review Problems .. 11-0
References ... 11-0
Contents

Discussion Topics and Review Problems ... 12-73
References ... 12-77

13 Residuals Processing, Disposal, and Reuse ... 13-1
13.1 Chapter Objectives .. 13-1
13.2 Conventional and Emerging Technologies for Sludge Processing 13-1
13.3 Characteristics of Municipal Sludge ... 13-2
13.3.1 Sources and Solids Content ... 13-2
13.3.2 Sludge Quantity Variations and Solids and Volume Relationship 13-2
13.3.3 Sludge and Scum Pumping ... 13-4
13.3.4 Preliminary Sludge Preparation Operations 13-6
13.4 Conventional Sludge Processing Systems, Process Diagrams, and Regulatory Requirements ... 13-14
13.4.1 Sludge Processing Systems ... 13-14
13.4.2 Sidestreams .. 13-14
13.4.3 Process Diagrams ... 13-14
13.4.4 Regulatory Requirements for Biosolids Reuse and Disposal 13-14
13.5 Sludge Thickening ... 13-22
13.5.1 Gravity Thickening ... 13-22
13.5.2 Dissolved Air Flotation Thickening .. 13-33
13.5.3 Centrifugal Thickening ... 13-37
13.5.4 Gravity Belt Thickening ... 13-38
13.5.5 Rotary Drum Thickener ... 13-40
13.5.6 Membrane Thickener ... 13-40
13.6 Sludge Stabilization .. 13-41
13.6.1 Anaerobic Digestion ... 13-41
13.6.2 Aerobic Digestion ... 13-72
13.6.3 Chemical Stabilization ... 13-89
13.6.4 Heat Treatment or Thermal Stabilization 13-90
13.7 Sludge Conditioning .. 13-90
13.7.1 Chemical Conditioning .. 13-90
13.7.2 Physical Conditioning .. 13-97
13.8 Sludge Dewatering ... 13-97
13.8.1 Natural Dewatering Systems ... 13-98
13.8.2 Mechanical Dewatering Systems ... 13-109
13.9 Material Mass Balance Analysis .. 13-125
13.10 Emerging Technologies for Enhanced Sludge Stabilization and Resource Recovery .. 13-134
13.10.1 Pretreatment of Sludge ... 13-134
13.10.2 Enhanced Anaerobic Digestion Performance 13-136
13.10.3 Resource Recovery from Municipal Sludge 13-137
13.10.4 Nitrogen Removal by Partial Nitrification/Anammox (PN/A) Process .. 13-139
13.11 Sludge Disposal and Biosolids Reuse .. 13-147
13.11.1 Composting .. 13-148
13.11.2 Heat Drying ... 13-159
13.11.3 Thermal Oxidations ... 13-159
13.11.4 Recalcination ... 13-164
13.11.5 Land Application of Biosolids .. 13-164
13.11.6 Residuals Disposal by Landfilling .. 13-176
Discussion Topics and Review Problems ... 13-182
References ... 13-186

14 Plant Layout, Yard Piping, Plant Hydraulics, and Instrumentation
and Controls ... 14-1
14.1 Chapter Objectives ... 14-1
14.2 Plant Layout .. 14-1
 14.2.1 Factors Affecting Plant Layout and Site Development 14-1
 14.2.2 Construction Requirements .. 14-2
 14.2.3 Compact and Modular Site Development 14-3
 14.2.4 Plant Utilities .. 14-4
 14.2.5 Environmental Considerations and Security 14-4
 14.2.6 Occupational Health and Safety ... 14-5
 14.2.7 Future Expansion ... 14-5
14.3 Yard Piping ... 14-10
 14.3.1 Organizing Yard Piping. .. 14-10
 14.3.2 Pipe Galleries ... 14-10
 14.3.3 Considerations for Plant Upgrading 14-11
14.4 Plant Hydraulics .. 14-11
 14.4.1 Hydraulic Profile .. 14-11
 14.4.2 Head Losses through Treatment Units 14-12
 14.4.3 Head Losses through Connecting Conduits 14-12
14.5 Instrumentation and Controls .. 14-21
 14.5.1 Benefits of Instrumentation and Control Systems 14-21
 14.5.2 Components of Control Systems ... 14-21
Discussion Topics and Review Problems ... 14-37
References ... 14-40

15 Advanced Wastewater Treatment and Upgrading Secondary
Treatment Facility .. 15-1
15.1 Chapter Objectives ... 15-1
15.2 Application of Advanced Treatment Technologies and Upgrading of
 Secondary Effluent ... 15-1
15.3 Natural Treatment Systems ... 15-1
 15.3.1 Terrestrial Treatment Systems .. 15-2
 15.3.2 Aquatic Treatment Systems ... 15-14
15.4 Advanced Wastewater Treatment Processes 15-26
 15.4.1 Biological Nutrient Removal (BNR) Processes 15-26
 15.4.2 Chemical Coagulation and Phosphorus Precipitation 15-27
 15.4.3 Lime Precipitation ... 15-28
 15.4.4 Breakpoint Chlorination for Ammonia Removal 15-28
 15.4.5 Air Stripping for Removal of Dissolved Gases and VOCs 15-29
 15.4.6 Granular Filtration ... 15-40
 15.4.7 Surface Filtration ... 15-74
 15.4.8 Carbon Adsorption .. 15-78
 15.4.9 Ion Exchange .. 15-100
Appendix A: Abbreviations and Symbols, Basic Information about Elements, Useful Constants, Common Chemicals Used in Water and Wastewater Treatment, and the U.S. Standard Sieves and Size of Openings. A-1

Appendix B: Physical Constants and Properties of Water, Solubility of Dissolved Gases in Water, and Important Constants for Stability and Sodicity of Water ... B-1

Appendix C: Minor Head Loss Coefficients for Pressure Conduits and Open Channels, Normal Commercial Pipe Sizes, and Design Information of Parshall Flume ... C-1

Appendix D: Unit Conversions .. D-1

Appendix E: Summary of Design Parameters for Wastewater Treatment Processes .. E-1

Appendix F: List of Examples and Solutions ... F-1

Index .. I-1
Over the last decade there have been rapid developments and changes in the field of wastewater treatment. The emphasis has been on identification, detection, and removal of specific constituents; computer simulation and modeling; membrane processes; renovation and reuse of wastewater effluent; nutrients recovery, and reduction and utilization of biosolids; energy conservation; greater understanding of theory and principles of treatment processes; and application of these fundamentals into facility design. Environmental engineers have many responsibilities. One of the most demanding yet satisfying of these are the design of wastewater treatment and reuse facilities. There are several books that discuss the fundamentals, scientific principles, and concepts and methodologies of wastewater treatment. The actual design calculation steps in numerical examples with intense focus on practical application of theory and principles into process and facility design are not fully covered in these publications. The intent of the authors writing this book is threefold: first, to present briefly the theory involved in specific wastewater treatment processes; second, to define the important design parameters involved in the process, and provide typical design values of these parameters for ready reference; and third, to provide a design approach by providing numerical applications and step-by-step design calculation procedure in the solved examples. Over 700 illustrative example problems and solutions have been worked out to cover the complete spectrum of wastewater treatment and reuse from fundamentals through advanced technology applied to primary, secondary and advanced treatment, reuse of effluent, by-product recovery and reuse of biosolids. These examples and solutions enhance the readers’ comprehension and deeper understanding of the basic concepts. They also serve as a good source of information for more experienced engineers, and also aid in the formal design training and instruction of engineering students. Equipment selection and design procedures are the key functions of engineers and should be emphasized in engineering curricula. Many practice problems with step-by-step solution provide skills to engineering students and professionals of diverse background for learning, and to master the problem-solving techniques needed for professional engineering (PE) exams. Also, these solved examples can be applied by the plant designers to design various components and select equipment for the treatment facilities. Thus, the book is a consolidated resource of valuable quick-and-easy access to a myriad of theory and practice information and solved examples on wastewater treatment processes and reuse.

This work is divided into two volumes. Principles and basic treatment processes are covered in Volume 1, which includes Chapters 1 through 10. Volume 2 contains Chapters 11 through 15 to cover post-treatment processes, reuse, and solids disposal.

Volume 1: Principles and Basic Treatment. Chapter 1 is an overview of wastewater treatment: past, present, and future directions. Chapters 2 and 3 cover the stoichiometry, reaction kinetics, mass balance, theory of reactors, and flow and mass equalization. Sources of municipal wastewater and flow rates and characteristics are provided in Chapters 4 and 5. Chapter 6 provides an in-depth coverage of wastewater treatment objectives, design considerations, and treatment processes and process diagrams. The preliminary treatment processes are covered in Chapters 7 and 8. These unit processes are screening and grit removal. Chapter 9 deals with primary treatment with plain and chemically
enhanced sedimentation. Chapter 10 provides an in-depth coverage of biological waste treatment and nutrients removal processes.

Volume 2: Post-Treatment, Reuse, and Disposal. Chapter 11 covers major processes for effluent disinfection, while Chapter 12 deals with effluent disposal and reuse. Chapter 13 is devoted to residuals management, recovery of resources, and biosolids reuse. The plant layout, yard piping, plant hydraulics, and instrumentation and controls are covered in Chapter 14. Upgrading of secondary treatment facility, land application, wetlands, filtration, carbon adsorption, BNR and MBR; and advanced wastewater treatment processes such as ion exchange, membrane processes, and distillation for demineralization are covered in Chapter 15.

This book will serve the needs of students, teachers, consulting engineers, equipment manufacturers, and technical personnel in city, state, and federal organizations who are involved with the review of designs, permitting, and enforcement. To maximize the usefulness of the book, the technical information is summarized in many tables that have been developed from a variety of sources. To further increase the utility of this book six appendices have been included. These appendices contain (a) abbreviations and symbols, basic information about elements, useful constants, common chemicals used in water and wastewater treatment, and U.S. standard sieves and size of openings; (b) physical constants and properties of water, solubility of dissolved gases in water, and important constants for solubility and sodicity of water; (c) minor head loss coefficients for pressure conduits and open channels, normal commercial pipe sizes, and design information of Parshall fumes; (d) unit conversions; (e) design parameters for wastewater treatment processes; and (f) list of examples presented and solved in this book. These appendices are included in both volumes. The numerical examples are integrated with the key words in the subject index. This gives additional benefit to the users of this book to identify and locate the solved examples that deal with the step-by-step calculations on the specific subject matter.

Enough material is presented in this textbook that cover supplemental material for a water treatment course, and a variety of wastewater treatment courses that can be developed and taught from this title. The supplemental material for a water treatment course include components of municipal water demand (Section 4.3), rapid mix, coagulation, flocculation, and sedimentation (Sections 9.6, 9.7, and 10.9), filtration (Section 15.4.6), carbon adsorption (Section 15.4.8), chlorine and ozone disinfection (Sections 11.6 and 11.8), demineralization by ion exchange and membrane processes (Sections 15.4.9 and 15.4.10), and residuals management (Sections 13.4.1 through 13.4.3, 13.5 through 13.8, and 13.11.6). At least three one-semester, and one two-semester sequential wastewater treatment courses at undergraduate or graduate levels can be developed and taught from this book. The specific topics to be covered will depend on time available, depth of coverage, and the course objectives. The suggested wastewater treatment and reuse courses are:

Course A: A one-semester introductory course on wastewater treatment and reuse
Course B: A sequential two-semester advance course on wastewater treatment and reuse
Course C: A one-semester course on physical and chemical unit operations and processes
Course D: A one-semester course on biological wastewater treatment

The suggested course outlines of these courses are provided in the tables below. The information in these tables is organized under three columns: topic, chapter, and sections. The examples are not included in these tables. It is expected that the instructor of the course will select the examples to achieve the depth of coverage required.

Course A: Suggested course contents of a one-semester introductory course on wastewater treatment and reuse

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of wastewater treatment</td>
<td>1</td>
<td>All</td>
</tr>
<tr>
<td>Stoichiometry and reaction kinetics</td>
<td>2</td>
<td>2.1 and 2.2</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass balance, reactors, and equalization</td>
<td>3</td>
<td>3.1 to 3.3, and 3.4.1 to 3.4.3</td>
</tr>
<tr>
<td>Sources and flow rates of wastewater</td>
<td>4</td>
<td>All</td>
</tr>
<tr>
<td>Characteristics of municipal wastewater</td>
<td>5</td>
<td>5.1 to 5.6, 5.7.1, 7.8, and 5.9</td>
</tr>
<tr>
<td>Treatment and design objectives, and processes</td>
<td>6</td>
<td>All</td>
</tr>
<tr>
<td>Screening</td>
<td>7</td>
<td>All</td>
</tr>
<tr>
<td>Grit removal</td>
<td>8</td>
<td>8.1 to 8.3, 8.4.1 to 8.4.5, 8.5, and 8.6</td>
</tr>
<tr>
<td>Conventional and chemically enhanced primary sedimentation</td>
<td>9</td>
<td>9.1 to 9.6, 9.7.1, and 9.7.2</td>
</tr>
<tr>
<td>Biological waste treatment: basics, oxygen transfer, fixed film attached growth processes, anaerobic treatment, biological nitrogen removal, and final clarifier</td>
<td>10</td>
<td>10.1, 10.2, 10.3.1, 3.3.2, 10.3.4 to 10.3.8, 10.3.10, 10.3.11, 10.4 to 10.6, 10.7.1 to 10.7.3, 10.8, and 10.9</td>
</tr>
<tr>
<td>Effluent disinfection</td>
<td>11</td>
<td>11.1 to 11.7</td>
</tr>
<tr>
<td>Effluent reuse and disposal</td>
<td>12</td>
<td>12.1, 12.2, 12.5, and 12.6</td>
</tr>
<tr>
<td>Residuals processing, reuse, and disposal</td>
<td>13</td>
<td>13.1 to 13.8, and 13.11</td>
</tr>
<tr>
<td>Plant layout, piping, hydraulics, and instrumentation and control</td>
<td>14</td>
<td>All</td>
</tr>
<tr>
<td>Advanced wastewater treatment and upgrading secondary treatment facility</td>
<td>15</td>
<td>15.1 to 15.3, 15.4.5, 15.4.6, and 15.4.8 to 15.4.10</td>
</tr>
</tbody>
</table>

Course B: Suggested course contents of a sequential two-semester advanced course on wastewater treatment and reuse

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overview of wastewater treatment</td>
<td>1</td>
<td>All</td>
</tr>
<tr>
<td>Stoichiometry and reaction kinetics</td>
<td>2</td>
<td>All</td>
</tr>
<tr>
<td>Mass balance, reactors, and equalization</td>
<td>3</td>
<td>All</td>
</tr>
<tr>
<td>Sources and flow rates of wastewater</td>
<td>4</td>
<td>All</td>
</tr>
<tr>
<td>Characteristics of municipal wastewater</td>
<td>5</td>
<td>All</td>
</tr>
<tr>
<td>Treatment objectives, design considerations, and treatment processes</td>
<td>6</td>
<td>All</td>
</tr>
<tr>
<td>Screening</td>
<td>7</td>
<td>All</td>
</tr>
<tr>
<td>Grit removal</td>
<td>8</td>
<td>All</td>
</tr>
<tr>
<td>Primary and enhanced sedimentation</td>
<td>9</td>
<td>All</td>
</tr>
<tr>
<td>Biological waste treatment: fundamentals and types</td>
<td>10</td>
<td>10.1 and 10.2</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological waste treatment (cont’d): suspended, attached, aerobic, anaerobic kinetics, oxygen transfer, biological nutrient removal (BNR), computer application, and final clarifiers</td>
<td>10</td>
<td>10.3 to 10.10</td>
</tr>
<tr>
<td>Disinfection and kinetics</td>
<td>11</td>
<td>All</td>
</tr>
<tr>
<td>Effluent reuse and disposal</td>
<td>12</td>
<td>All</td>
</tr>
</tbody>
</table>

Continued
Course C: Suggested course contents of a one-semester course on physical and chemical unit operations and processes

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of wastewater treatment</td>
<td>1</td>
<td>All</td>
</tr>
<tr>
<td>Stoichiometry and reaction kinetics</td>
<td>2</td>
<td>All</td>
</tr>
<tr>
<td>Mass balance, reactors, and equalization</td>
<td>3</td>
<td>All</td>
</tr>
<tr>
<td>Sources and flow rates of wastewater</td>
<td>4</td>
<td>4.4 and 4.5</td>
</tr>
<tr>
<td>Characteristics of municipal wastewater</td>
<td>5</td>
<td>5.1 to 5.4</td>
</tr>
<tr>
<td>Wastewater treatment processes</td>
<td>6</td>
<td>6.3.5</td>
</tr>
<tr>
<td>Screening: coarse and fine screens</td>
<td>7</td>
<td>7.1, and 7.2.1 to 7.2.4</td>
</tr>
<tr>
<td>Discrete settling and grit removal</td>
<td>8</td>
<td>8.1, 8.3, 8.4.2, and 8.4.4</td>
</tr>
<tr>
<td>Flocculant settling, rapid mixing, flocculation, and sedimentation</td>
<td>9</td>
<td>9.1, 9.2, 9.5.5, 9.6.5, 9.6.6, and 9.7.2</td>
</tr>
<tr>
<td>Zone or hindered settling</td>
<td>10</td>
<td>10.9.2</td>
</tr>
<tr>
<td>Disinfection kinetics, chlorination, dechlorination, ozonation, and UV radiation</td>
<td>11</td>
<td>11.4, 11.5, 11.6.1, 11.6.2, 11.7.1, 11.8.6, and 11.9.4 to 11.9.6</td>
</tr>
<tr>
<td>Compression settling, dissolved air flotation, anaerobic digestion, conditioning, and dewatering</td>
<td>13</td>
<td>13.4.1, 13.4.2, 13.5.1 to 13.5.3, 13.6.1, 13.6.2, 13.7.1, 13.8.1, and 13.8.2</td>
</tr>
<tr>
<td>Air stripping, filtration, carbon adsorption, ion exchange, and membrane processes</td>
<td>15</td>
<td>15.4.5, 15.4.6, 15.4.8, 15.4.9, and 15.4.10</td>
</tr>
</tbody>
</table>

Course D: Suggested course contents of a one-semester course on biological wastewater treatment

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of wastewater treatment</td>
<td>1</td>
<td>All</td>
</tr>
<tr>
<td>Stoichiometry and reaction kinetics</td>
<td>2</td>
<td>All</td>
</tr>
<tr>
<td>Mass balance, reactors, and equalization</td>
<td>3</td>
<td>All</td>
</tr>
<tr>
<td>Sources and flow rates of wastewater</td>
<td>4</td>
<td>All</td>
</tr>
<tr>
<td>Characteristics of municipal wastewater</td>
<td>5</td>
<td>All</td>
</tr>
<tr>
<td>Wastewater treatment processes</td>
<td>6</td>
<td>6.3.5</td>
</tr>
<tr>
<td>Biological waste treatment, biological nutrient removal (BNR), and final clarifier</td>
<td>10</td>
<td>All</td>
</tr>
<tr>
<td>Pathogens reduction in treatment processes and natural die-off kinetics</td>
<td>11</td>
<td>11.2.1, and 11.5.1</td>
</tr>
<tr>
<td>Anaerobic and aerobic digestion of sludge, material mass balance, and composting</td>
<td>13</td>
<td>13.6.1, 13.6.2, 13.9, and 13.11.1</td>
</tr>
<tr>
<td>Aquatic treatment systems, and membrane processes</td>
<td>15</td>
<td>15.3.2, and 15.4.10</td>
</tr>
</tbody>
</table>
In the solutions of examples, full expressions are provided to demonstrate step-by-step calculations. Many process and hydraulic parameters are involved in these expressions. To be more efficient, these parameters are represented by symbols. Sometimes, in the same example, parameters are applied multiple times to different streams or reactors. Therefore, subscripted notations are also used to identify these parameters. Each symbol is fully defined when it appears for the first time in the solution of the example. After that this symbol is repeated in the entire solution. This approach is helpful in (1) saving space by replacing lengthy descriptions of a parameter, and (2) providing an identification of the numerical value used or obtained in the expression. Additionally, these symbols provide the designers a ready reference in their design calculations while using Mathcad or spreadsheet software.

The International System of Units (SI) is used in this book. This is consistent with the teaching practices in most universities in the United States and around the world. Most tables in the book have dual units and include conversion from SI to U.S. customary units in footnotes. Useful conversion data and major treatment process design parameters are provided in Appendices D and E.
Acknowledgment

A project of this magnitude requires the cooperation and collaboration of many people and organizations. We are indebted to many professionals, faculty members, students, and friends who have helped and provided constructive suggestions. We must acknowledge the support, encouragement, and stimulating discussion by Michael Morrison, W. Walter Chiang, and Pete K. Patel throughout this project. CP&Y, Inc., a multidisciplinary consulting engineering firm in Dallas, Texas provided the technical support. We gratefully appreciate the support and assistance provided by Michael F. Graves, Marisa T. Vergara, Gregory W. Johnson, Ellen C. Carpenter, Barbara E. Vincent, Megan E. Martin, Gil W. Barnett, and Dario B. Sanchez. Many students also assisted with typing, artwork, literature search, and proofreading. Among them are Bernard D’Souza, Rajeshwar Kamidi, Neelesh Sule, Richa Karanjekar, Gautam Eapi, and Olimatou Ceesay.

Kelcy Warren established Syed Qasim Endowed Professorship in Environmental Engineering in the Department of Civil Engineering at The University of Texas at Arlington. Funds from this endowment helped to support students. The support of the Department of Civil Engineering at The University of Texas at Arlington is greatly appreciated. In particular, we thank the support of Dr. Ali Abolmaali, and tireless support of Sara Ridenour in making departmental resources available.

Finally, we must acknowledge with deep appreciation the support, encouragement, and patience of our families.

Although the portions of this book have been reviewed by professionals and students, the real test will not come until this book is used in classes, and by professionals in design of wastewater treatment facilities. We shall appreciate it very much if all who use this book will let us know of any errors and changes they believe would improve its usefulness.

Syed R. Qasim and Guang Zhu
Arlington, Texas
Syed R. Qasim is a professor emeritus in the Department of Civil Engineering at the University of Texas at Arlington. Dr. Qasim earned PhD and MSCE from West Virginia University, and BSCE from India. He served on the faculty of Polytechnic University, Brooklyn, New York, and on the faculty of the University of Texas at Arlington, Texas, from 1973 till his retirement in 2007. Dr. Qasim has conducted full-time research with Battelle Memorial Institute, Columbus Laboratories, and has worked as a design engineer with a consulting engineering firm in Columbus, Ohio. He has over 47 years of experience as an educator, researcher, and practitioner in the related fields of environmental engineering. His principal research and teaching interests include water and wastewater treatment processes and plant design, industrial waste treatment, and solid and hazardous waste management. He served nationally and internationally as a consultant with governmental agencies and private concerns. Dr. Qasim has written 3 books, and he is the author or coauthor of over 150 technical papers, encyclopedia and book chapters, and research reports. His papers, seminars, and short courses have been presented nationally and internationally. He is a life member and Fellow of American Society of Civil Engineers, and a life member of Water Environment Federation; a member of Association of Environmental Engineering and Science Professors, American Water Works Association, and other professional and honor societies. He is a registered professional engineer in the state of Texas.

Guang Zhu is an associate and senior water and wastewater engineering director with CP&Y, Inc., a multidisciplinary consulting engineering firm headquartered in Dallas, Texas. Dr. Zhu has over 30 years of consulting experience in planning, process evaluation, pilot testing, design, and commissioning of numeral conventional and advanced water and wastewater treatment plants in the United States and China. He had 10 years of consulting experience with Beijing General Municipal Engineering Design and Research Institute, Beijing, China. Dr. Zhu has coauthored one textbook and many technical papers and has translated two water and wastewater books in Chinese. He has taught several design courses as an adjunct assistant professor at the University of Texas at Arlington. He is a registered professional engineer in the state of Texas.